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This paper reviews the current status of discrete frequency noise prediction for rotating
blade machinery in the time domain. There are two major approaches both of which can be
classi"ed as the Kirchho!method. These methods depend on the solution of two linear wave
equations called the K and FW}H equations. The solutions of these equations for subsonic
and supersonic surfaces are discussed and some important results of the research in the past
years are presented. This paper is analytical in nature and emphasizes the work of the author
and co-workers at NASA Langley Research Center.
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1. INTRODUCTION

Having obtained a Ph.D. from Cornell University in 1973 under the supervision of
Professor William R. Sears, I started working at NASA Langley Research Center as
a visiting scientist of The George Washington University Joint Institute. My task at
Langley was to work on the prediction of the noise of helicopter rotors and propellers. We
had a good experimental group of engineers collecting helicopter rotor and propeller noise
data. However, the capability to predict the noise of these rotating machinery in the design
stage to meet community and military noise standards was lacking. By the early 1970s,
noise generation mechanisms of helicopter rotors and propellers were understood fairly
well. Mainframe computer technology was developing fast. Computer memory size and
speed were increasing by leaps and bounds. At that time, propeller noise prediction used
Gutin's formula [1] which was of 1930s vintage. Helicopter noise prediction was more
advanced and was based on Lowson's formula [2]. Lowson and co-workers had developed
helicopter noise prediction codes based on his theory. He had shown the consistency of his
result with that of Gutin. Both these formulas are for rotating compact dipoles predicting
the loading noise only. Thickness noise prediction was ignored because there was a feeling
among acousticians that it was not important for propellers and helicopter rotors. This was
contrary to the conclusion of Ernsthausen in Germany [3] and Deming in the U.S. [4] in
the 1930s who investigated thickness noise. In fact, Deming had derived a thickness noise
formula following the analytic procedure of Gutin but based on Rayleigh's piston in the
wall analysis. He also presented numerical results supporting experimental data on the
importance of thickness noise at high blade tip speeds.

In the early 1970s, most noise prediction methods were in the frequency domain. This was
the natural approach for the researchers because time-domain methods generally require
powerful computers. By suitable approximation and ingenuity, closed-form solutions were
obtained for some signi"cant problems using frequency domain analysis. Aeroacoustics
was an active research area and many experimental and theoretical works were being
0022-460X/01/040785#16 $35.00/0 ( 2001 Academic Press
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published then. Lighthill's theory was extended to #ows in the presence of moving surfaces
by Ffowcs Williams and Hawkings in a paper in the Philosophical Transactions [5]. I had
struggled to understand this highly abstract paper and to use it in my Ph.D. thesis. My
results were not suitable for immediate application in noise prediction. As I was searching
for a direction of research, I was wondering why time-domain methods were not used
extensively in aeroacoustics. It was in the summer of 1973 that I met Phil Doak at Langley.
I was impressed by his informality and friendliness. I asked him about the lack of interest in
the time-domain method in aeroacoustics. His response still rings in my ears: &&force of
tradition''! He then told me that I should ignore tradition and explore the time-domain
method for rotating blade noise prediction. It has been an exciting journey and I owe it all
to Phil. It is with great pleasure and honor that I dedicate this paper to Phil on the occasion
of his 80th birthday.

Phil's advice could not have been given at a more auspicious time. In addition to the
availability of powerful computers, there were also other new tools becoming available to
help in advancement of the time domain method. Computational #uid dynamics and more
versatile measuring instruments are two of these new tools. One which is perhaps overlooked,
and in my opinion the most important, is the analytic tool. The progress since the 1950s in
solving partial di!erential equations, particularly the use of the theory of distributions or
generalized functions [6}8], made it possible to get closed-form solution of the wave
equation with sources on a moving surface in various forms suitable for noise prediction.
Ffowcs Williams and Hawkings had used generalized function theory in their paper [5].
The power of this theory is such that much of what was known before such as the Kirchho!
formula for radiation [9], the Lowson's and Curle's formulae [2, 10], can be derived easily
and extended. Other questions such as the importance of shock waves in noise generation
can naturally be answered using this theory. However, the areas of mathematics applicable
in aeroacoustics of moving bodies which also include general tensor analysis and di!erential
geometry are not part of the curriculum of graduate level engineering. Goldstein has used
basic generalized function theory to derive some of the important results of aeroacoustics
[11]. The present author has published two reports which cover the details of the
mathematics used for the wave equation with sources on a moving surface [12, 13]. These
reports together with Goldstein's book are recommended to the readers to follow the
analytic steps below.

In this paper, the Kirchho! method in aeroacoustics using the time-domain method is
reviewed. Emphasis will be given to the mathematical aspects of the method. The purpose
is to gather the results scattered in numerous technical papers of the author and the
co-workers in one place to help those entering the "eld and the other acousticians
interested in rotating blade noise. Recently, it has been possible to predict the quadrupole
noise of helicopter rotors in reasonable time on a desktop workstation. The results of some
research on high-speed impulsive rotor noise are reviewed. The detailed derivation of the
formulation used to calculate the noise from sources on an open surface (a panel) moving
supersonically are given. The Ffowcs Williams and Hawkings approach [5] can be
classi"ed as a Kirchho! method. In fact, these authors call one of their result as the
extension of the Kirchho! formula to a moving surface. We begin with two linear wave
equations called the Kirchho! (K) and the Ffowcs Williams}Hawkings (FW}H) equations.
The solution of the K equation gives the Kirchho! formula for moving surfaces. The
relation of the K equation to the FW}H equation is mentioned in a remark that follows.
Then the method of obtaining the solution of several wave equations with various kinds of
inhomogeneous source terms appearing in the governing equations is discussed. The
subsonic and supersonic cases are addressed separately because they require di!erent
treatment.
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The organization of the paper is as follows. The next section presents the governing
equations of the Kirchho! method. Here two equations called the K and the FW}H
equations are given. Four inhomogeneous source terms are recognized in these equations.
In section 3, a brief indication is given as to how the solutions to the wave equations with
these source terms can be obtained. A review of some of the recent results of quadrupole
noise prediction of rotors is presented. A new method to derive a formula suitable for
prediction of the noise from a supersonic panel will be presented here. Concluding remarks
follow in section 4.

2. THE GOVERNING EQUATIONS (K AND FW}H)

The classical Kirchho! formula [9] describes the solution of the wave equation in the
exterior of a surface S as a surface integral over S whose integrand depends on the values of
the unknown function, its normal and time derivatives on S. It was originally obtained by
selecting one of the two functions in Green's identity in four dimensions [11] as the
fundamental solution of the wave equation. The same result can be obtained by an elegant
method which requires a more abstract reasoning. Extend the unknown function, say the
acoustic pressure, to the interior of the surface by assuming that its value is zero there. Now
apply the wave operator to this discontinuous function treating all the derivatives as
generalized derivatives [6}8, 12, 13]. There will now be inhomogeneous source terms on
the right of the wave equation which involve the Dirac delta function with its support on the
surface S. This inhomogeneous wave equation is what we call the K equation. Using
the Green function of the wave equation in the unbounded space to formally solve
the K equation will give the Kirchho+ formula. One is not restricted to a stationary data
surface in this approach. This is precisely the method that Farassat and Myers used to
derive the Kirchho! formula for a moving surface [13, 14]. The same idea of extending all
#uid parameters to the interior of the surface S was utilized by Ffowcs Williams and
Hawkings to get the FW}H equation. They used the mass and momentum conservation
laws treating all the derivatives as generalized derivatives and manipulated these two
equations as Lighthill did to obtain a wave equation [5, 8, 11, 12]. Note that in deriving the
K equation, we assume that the unknown function satis"es the linear wave equation
everywhere while the FW}H equation utilizes the conservation laws. This explains the
di!erence in behavior of the solutions of these equations in the near "eld. See item (1) of the
remark below.

Let the moving surface be described by f (x, t)"0 such that f'0 outside the surface and
D$f D"1 on the surface. Let p@ be the acoustic pressure. Then the K equation is [12}14]
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number of the surface, c is the speed of sound and n"$f is the unit outward pointing
normal to the surface. The solution of the K equation is the Kirchho+ formula for the moving
surface f"0 [12}14].



788 F. FARASSAT
Next let f"0 be a surface which allows the #uid to #ow through, assuming again that
f'0 outside the surface and D$ f D"1 on the surface. The FW}H equation is [5, 8, 12, 15]

K2p@"(L/Lt)M[ou
n
!(o!o

0
)l

n
]d ( f )N

!(L/Lx
i
)M[o(u

n
!l

n
)u

i
#pn

i
]d ( f )N#(L1 2/Lx

i
Lx

j
)[¹

ij
H( f )], (3)

where p@ is (o!o
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are c the density and speed of sound of the

undisturbed medium. The local normal #uid and surface velocities are denoted by u
n
and v

n
respectively. The Lighthill stress tensor is denoted ¹

ij
and p is the surface pressure on f"0.

Note that the above description of the surface f implies that $f"n where n is the unit
outward normal to this surface. The Heaviside function is denoted by H( f ). The bar over
the partial di!erentiation denotes generalized di!erentiation [6}8, 12]. This notation is used
in this paper only when there is the possibility of confusion with ordinary di!erentiation.
The tradition has been followed of using the notation p@ in equation (3) which is de"ned as
follows:

p@"G
p@ outside f"0,

0 inside f"0.
(4)

Also note that p on the right side of equation (3) is the gage pressure p!p
0
. It was Ffowcs

Williams who proposed that a penetrable moving surface f"0 could be more suitable
for noise prediction [15, Chapter 11, section 10]. Recent applications have proved him
right.

It is evident that there are essentially four types of inhomogeneous source terms in the
and FW}H equations. Later in this paper, supersonic sources and other source types will be
treated. One needs to give the solution for the following four types of wave equations:
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This approach has several advantages. First, the solution of each of these equations are
basically di!erent. Second, by seeking exact closed-form solutions of these equations, one is
able to evaluate various kinds of common approximations, e.g., mean surface
approximation of blade loads, used in practical problems. It has been the policy at Langley
to derive exact solutions to these equations suitable for development of robust and e$cient
noise prediction codes. We have always required that no approximations to the blade
geometry and kinematics be made in the derivation of the main formulations. Various
choices of approximations are made later starting from these results.

Because of the presence of the Dirac delta function in equations (6}8), it is obvious that
the sources on the right of these equations are surface sources. The nature of the source in
equation (5) requires some explanation. From one point of view, it can be treated as
a volume source while from another as a combination of volume and surface sources. This
matter will be further elaborated in the next section.

By the Kirchho+ method is meant any method based on the solutions of the K or FW}H
equations. As seen above, the two equations are closely related in their derivation and
solution. The surface f"0 will be called the data surface.
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Remarks. (1) For many years, the FW}H equation was used in applications assuming that
the data surface f"0 coincided with the blade surface, i.e., an impenetrable surface. Ffowcs
Williams himself had suggested that a penetrable surface, as we have assumed here, may be
more suitable for noise prediction [15] by including the signi"cant part of the quadrupole
sources inside the surface in calculations. Di Francescantonio in Italy [16] and
independently Brentner and Farassat in the U.S. [17] implemented the suggestion of
Ffowcs Williams. Di Francescantonio showed the equivalence of this method to that based
on the Kirchho! formula for a moving surface of Farassat and Myers [14] in the far "eld.
Brentner and Farassat showed that the method based on the FW}H equation with
penetrable data surface is superior to that based on the Kirchho! formula in the near "eld
while the computational e!orts were comparable when the quadrupole sources outside the
surface f"0 were neglected. This produced a #urry of activities by aeroacousticians around
the world to convert their Kirchho! codes based on the K equation to that based on the
FW}H equation. In fact, there does not seem to be any incentive to use the Kirchho!
formula for moving surfaces in rotating blade noise prediction because it requires that the
data surface be in the linear region where the CFD accuracy is in question. However, the
Kirchho! formula for a moving surface is of interest in other "elds such as in the
electromagnetic radiation problem [9].

(2) Brentner and Farassat [17] have shown that the inhomogeneous source term on the
right of the FW}H equation can be written as:
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i.e., as the sum of the source terms on the right of the K equation, Q
K

and terms involving
products of the "rst order parameters of the #ow. The latter terms are negligible compared
to the source on the right of the K equation in the linear region. This explains the di!erence
in behavior of the solutions of the two equations in the near "eld.

(3) The solution of the K and FW}H equations is fairly simple for subsonic surfaces. If
part or all the surface f"0 travels at supersonic speed, obtaining a useful solution
for computation is notoriously di$cult. There are mathematical singularities in the solution
that are not physical. There is cancellation of singularities among the solution of
equations (5}8). There is formation of shock-like structures and appearance of
caustics in the acoustic "eld. We have spent much e!ort to derive solutions valid
for supersonic surface noise prediction and to understand the structure of the radiation
"eld.

(4) There seems to be endless varieties of solutions of the K and FW}H equations. One
reason given in deriving a new solution appears to be that the available solutions are time
consuming on a computer. In general, authors rarely state the computation time in research
papers. It is so much a function of the algorithms used in the code and how experienced the
researchers are in e$cient code development. Moreover, computation time is computer
dependent and computer technology is advancing at a very fast pace. At present there does
not appear to be a need for deriving yet another solution to these equations for subsonic
surfaces.

(5) Because of the simplicity of the Green function of the wave equation in the frame "xed
to the undistributed medium, it is better to always start in this frame for obtaining
a solution even for the observer in motion. Generally, the known solutions in the moving
frame are valid for uniform rectilinear motion and, thus, do not apply to an accelerating or
maneuvering aircraft and somewhat restricted in the scope of application. This comment
applies to open rotors and propellers. For ducted fan problems, often the frame of choice is
one that is "xed to the duct.
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3. THE SOLUTION OF THE GOVERNING WAVE EQUATIONS

A description of how equations (5}8) are solved will now be given. Readers are referred to
the appropriate papers for the details. It is not possible to give all the relevant details here
because the algebraic manipulations are somewhat extensive.

3.1. THE QUADRUPOLE NOISE

The quadrupole noise is governed by equation (5). This term only appears in the FW}H
equation. Ideally, we would like to locate the data surface where the contribution of the
quadrupoles outside the surface to the noise is small. At present in some important problems,
such as in high-speed helicopter rotor noise prediction, this does not seem possible because
the accuracy of the CFD data is not satisfactory where the data surface must be positioned.
The alternative technique is taking the blade surface as the data surface and adding the
contribution of the quadrupoles in the regions where they have large source strength, to the
surface noise. This requires a suitable solution of equation (5) as well as a good approximation
method based on the physics of the problem. Some exact results are "rst presented.

Let (x, t) and (y, q) be the observer and the source space}time variables. For r"Dx!yD,
the surface X: r!c(t!q)"0 de"nes a sphere with center at the observer and the radius
c(t!q) for all q)t. Here c is the speed of sound in the undisturbed medium. Let dX be the
element of the surface area of this sphere and de"ne F (y; x, t)"[ f (y, q)]

ret
,f (y, t!r/c).

Then the solution of equation (5) is
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One can visualize the above integral dynamically. In what follows, we assume that (x, t) is
kept "xed in the discussion. The surface X is called the collapsing sphere because, this surface
represents a sphere with center at x whose radius collapses at speed of sound. Figure
1 shows the collapsing sphere in the process of intersecting a rotor blade. The surface F"0
is generated by the intersection of the collapsing sphere and the data surface f"0 for q)t.
This surface can be determined for a "xed (x, t) in advance and is independent of the source
time. The inner surface integral in equation (9) sums the contribution of all the quadrupoles
outside the surface F"0 over the sphere X at the source time q. As q varies, the radius of
X changes and therefore this surface integral is source time dependent. The result of the
surface integral is, therefore, a function of (q; x, t). The outer integral sums this function over
the source time with the denominator of the integrand accounting for the spherical
spreading of the radiated sound.

The above integral treats all the quadrupoles as volume sources. It is an exact result and
is valid when shock waves, wakes and other discontinuities are present in the #ow. In
practical problems, the integral on the right side of equation (9) is evaluated numerically
and one is therefore obliged to use numerical di!erentiation with respect to the observer
variables*a procedure that is subject to numerical errors in addition to being time
consuming on a computer. Farassat and Brentner have converted the above double
di!erentiation with respect to the space variables to derivatives with respect to observer
time variable [18]. The conversion can be performed exactly. The procedure is similar to the
derivation of formulation 1 in section 3.3.1. This result was used by Brentner and Holland
[19] and Farassat and Brentner [20] to derive two analytic approximations to equation (9)
called formulations Q1A and Q2, respectively, for prediction of high-speed impulsive noise
of helicopter rotors.



Figure 1. The collapsing sphere intersecting a rotating blade at the source time q. Note that the collapsing sphere
is the intersection of the characteristic cone (conoid) of (x, t) with the three-dimensional space at the time q.
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Both these formulations approximate the surface X by a portion of a cylinder with axis
passing through the observer and perpendicular to the rotor plane. The observer is assumed
to be in the far "eld and in the rotor plane where the peak directivity of high-speed
impulsive noise lies. The quadrupole sources are integrated along lines perpendicular to the
rotor plane and treated as new surface sources on this plane. Although this approximation
is strictly valid for the observer in the far "eld and in the rotor plane, tests have shown that it
is also good for the observer out of the rotor plane. Two di!erent analytic techniques were
used to get the two formulations. Formulation Q1A is valid for subsonic sources because of
the appearance of the Doppler factor in the denominator of its integrand. Formulation Q2
is valid for both subsonic and supersonic sources and is remarkably simple. The use of the
above approximation yields a substantial reduction in quadrupole source strength storage
space and computation time. In fact, it can be said that quadrupole noise prediction has
now come within the reach of the helicopter rotor designers.

A summary is now given of the most important conclusions of the research on high-speed
rotor noise prediction at Langley from the numerical studies based on the above two
formulations [19, 20]:

(1) formulation Q1A produces a more robust code than formulation Q2 because the
former has time derivatives while the latter has directional derivatives of the surface sources.
Because of high source gradients at the leading edge of the blades and across shock traces,
formulation Q2 is prone to numerical errors.

(2) Shock surfaces and the region near the leading edge of the blades contribute
signi"cantly to the high-speed rotor noise. It is explained in the next subsection how shock
surfaces that have no volume can actually contribute to the quadrupole noise.

(3) In case of delocalization [21], where the shocks on the blades can extend far beyond
the blade tips, one should also include the source region beyond the tips in noise prediction.
However, the sources over the blades and beyond the tips behave di!erently in shaping the
acoustic waveform. The sources around and in the vicinity of the blades account for the
peak level of the waveform but the sources beyond the tip account for the steepening and
broadening of the waveform which can often be signi"cant.

3.2. IS THE QUADRUPOLE SOURCE TERM IN EQUATION (5) A VOLUME SOURCE?

The inhomogeneous source term of equation (5) bears much resemblance to that in
Lighthill's jet noise equation. If we study the derivation of FW-H equation carefully, we
recognize that we have explicitly exhibited only the discontinuity of #uid parameters across
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the surface f"0. There may be other discontinuities within the #uid such as shock surfaces,
thin wakes and vortices. One can explicitly exhibit the sources due to these discontinuities
by using just the concept of generalized di!erentiation [6}8, 12, 13]. Farassat et al. [18, 22,
23] have carried out this procedure in detail. To illustrate the method we will only consider
the discontinuity across a shock wave in the #ow and show how easily we can identify the
sources on the shocks and their strengths.

Let the shock be de"ned again by f"0. Consider the quadrupole source term of Lighthill

Q"L1 2¹
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/Lx
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j
. (10)

The derivatives here are generalized derivatives as indicated in this equation by a bar over
the derivative sign. Understanding and acceptance of this statement requires much thinking
and mathematical maturity. It follows from the fact that conservation laws and all the steps
in deriving the FW}H equation are set in the space of generalized functions. Thus,
discontinuous functions are naturally allowed in the solution of di!erential equations but
all derivatives are generalized derivatives. To avoid confusion with the notation of ordinary
derivatives, a bar over the derivative sign is used whenever there is the danger of confusion.
The Heaviside function of the source term of equation (5) has been eliminated to illustrate
the main idea and to simplify algebraic manipulations. The rule of generalized
di!erentiation gives in two steps the following:
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stands for the jump of a quantity across the shock, the subscripts 1

and 2 refer to the two sides of the shock surface and n
i
denotes the components of the local

unit normal to this surface pointing into region 2. It is now obvious that the jump across a
shock produce sources of the types in equations (6) and (8). They can be recognized as
a monopole and a dipole distribution on the shock surface. All the derivatives, except in the
last term on the right side of equation (11) are ordinary derivatives now. Using the mass
continuity and momentum equations, one can write the jumps in the Lighthill stress tensor
and its derivatives across the shock in terms of other #ow parameters that are computed in
CFD codes.

A subtle point about Lighthill's jet noise theory when shocks are present in the #ow is
now discussed. It can be shown that the derivatives of the inhomogeneous source term of
Lighthill's equation must be treated as generalized derivatives in this case, i.e., the source
term is precisely Q in equation (10) [5]. Equation (11) tells us that when there are shocks
inside a jet, then QOL2¹
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ordinary derivatives. This term has a discontinuity across the shock and thus some of the
algebraic manipulations of this term under an integral are di!erent from those associated
with shock-free jet noise theory. For example, the following two integrals are not equal
because of this discontinuity:
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It is clear that I
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is the contribution of L2¹
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contribution of Q. This means that p@(x, t)"I
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/4n is the solution of the jet noise equation

when shocks are present in the #ow. Furthermore, if we use equation (11) in the integrand of
the last integral on the right side of equation (13), we will get I

1
plus some surface integrals

over the shock surfaces inside the jet. The subtlety we refer to here is that numerically this
result is equal to that obtained from the expression on the right of the "rst equality sign in
equation (13). But this expression happens to be the familiar solution that Lighthill gave for
his shock-free jet noise theory.

Farassat and co-workers had proposed the rotating shock waves on rotor blades as the
main source of high-speed impulsive noise [24]. Some shock noise calculations based on
equation (11) have shown this to be basically correct. It was found later using formulation Q2
that the quadrupole sources near the leading edge of the blades is another important
contributor to high-speed rotor noise [20]. Currently, the main obstacle in utilizing
equation (11) for shock noise prediction is that one requires high-resolution CFD data to
get the source strengths. At present, CFD codes cannot provide the jump in the gradient of
the Lighthill stress tensor across the shock accurately in reasonable computation time for
noise prediction. One should note that CFD code developers for aerodynamic calculations
are generally not interested in this parameter. They should be made aware of such a need in
aeroacoustics.

Many interesting results await discovery by studying the quadrupole source term of
FW}H equation in the setting of generalized function theory. In addition to shock sources,
other sources from wake #apping, vortex motion and boundary layer can easily be
identi"ed [22, 23]. Unfortunately, because of the heavy investment in time required to
learn the needed mathematical tools which include di!erential geometry and general
tensor analysis, researchers have not been attracted to the study of these sources by this
method. It is to be noted that intuitively, one may not recognize rotating shocks and
#apping wakes as sources of sound. And if one does so, "nding the source strengths from
classical analysis is not an easy job because of substantial entanglement in physical
arguments and algebraic manipulations. The method proposed here is the natural approach
because discontinuities are allowed in generalized functions and all the operations on
ordinary functions are at our disposal with remarkable properties such as exchange of limit
operations.

So what is the answer to the question in the title of this subsection? The quadrupole
source in equation (5) is a volume source only if the solution is written in the form of
equation (9) or its equivalents such as formulations Q1A and Q2. The integrand in this
equation can and usually is discontinuous due to shocks, wakes, etc. One can break down
the quadrupole source term of equation (5) separating the contributions of the
discontinuities which appear as surface terms involving jumps in the Lighthill stress tensor
and its gradient across the surface of discontinuity. So the source term is equation (5) can
also be viewed as a combination of volume and surface sources the sum of whose
contributions to the noise is the same as that from equation (9).

3.3. THE SURFACE NOISE*EQUATIONS (6}8)

A solution of equation (6) is given that is both simple and basic for the wave equation
with sources on a moving surface [12, 13, 25]:
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where the parameter K is

K"(1#M2
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cos h)1@2. (15)

Here, M
n

is the local normal Mach number of the surface f"0 and h is the angle
between n and the radiation direction r"(x!y)/r. The surface F"0 de"ned earlier is
called the in#uence surface of (x, t) or more commonly the R-surface. Its construction is
shown in Figures 1 and 2. More details can be found in reference [25]. The following
relations derived by Farassat [26], can be used to write the above solution in two other
forms:

dR

K
"

dS

D1!M
r
D
"

c dCdq
sin h

, (16)

where dS is the element of surface area of the data surface f"0, M
r

is the local
Mach number in the radiation direction of the data surface and dC is the element of
length of the curve of intersection of the collapsing sphere and the data surface (see
Figure 1).

3.3.1. ¹he subsonic case

The solution of equation (7) for a data surface moving subsonically is based on equations
(15) and (16). It is

4np@(x, t)"
L
Lt P

f/0
C

Q
2
(y, q)

r D1!M
r
DD

ret

dS. (17)

The time derivative is introduced by

L[q (y, q)]
ret

Lt
"C

1

(1!M
r
)

Lq (y, q)
Lq D

ret

, (18)

where q(y, q) is the expression inside the square brackets in the integrand of equation (17).
This step will not be carried out here.
Figure 2. The construction of the R-surface for a #at rectangular rotor blade. The rotor is moving forward at the
velocity V

F
in such a way that all points on the rotor travel at subsonic speed relative to the speed of sound in

undistributed medium. The R-surface will be more complicated and even in several pieces if part or all the blade
surface travels at supersonic speed.
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The solution of equation (8) is also based on equations (15) and (16) and is

4np@(x, t)"$P
f/0
C

Q
3
(y, q)

r D1!M
r
DD

ret

dS. (19)

To bring the space derivative in, we prefer to convert it "rst to time derivative and then
use equation (18). This conversion was given by Farassat [26, 27] based on an identity
relating the space and time derivatives of the Green function of the wave equation. The
result is

4np@(x, t)"
1

c

L
Lt P

f/0
C

Q
3r

(y, q)
r D1!M

r
DD

ret

dS! P
f/0
C

Q
3r

(y, q)
r2 D1!M

r
DD

ret

dS, (20)

where we have de"ned Q
3r
"Q

3
) r; . When Q

2
"o

0
l
n

and Q
3
"!pn, equations (17) and

(20) give the thickness and loading noise terms of formulation 1 of Farassat respectively
[26}28]. The data surface f"0 is taken as the blade surface itself. After taking the time
derivative inside the integrals by using equation (18), we get the thickness and loading noise
terms of formulation 1A of Farassat [28, 29]. This formulation has been coded in NASA
helicopter noise prediction code WOPWOP [29] which is extensively used by the U.S.
helicopter industry. This code is highly robust and e$cient on a desktop workstation. Some
versions of the code also have the capability of predicting the subsonic and supersonic
quadrupole noise. There are many publications by NASA and industry researchers and
engineers reporting on the application of this code to helicopter rotor noise prediction and
comparison with experimental data.

3.3.2. ¹he supersonic case

For supersonically moving surfaces it is di$cult to get a singularity-free solution of the
FW}H equation which can be used in the development of an e$cient and robust code. In
general, the formulations are very complicated and their derivation requires many algebraic
manipulations [30, 31]. In noise prediction codes, the data surface is divided into panels and
the contribution of each panel to the noise is evaluated separately and summed. Naturally,
for panels moving at subsonic speed, we want to use the simple subsonic formulations such
as 1A discussed above. It can be shown that no additional terms appear in this formulation,
e.g., edge terms, when we use it for a panel. For supersonic formulations, in general, one has
edge line integrals in the solution of the wave equation for a panel. Therefore, we should
explicitly write the surface source terms of FW}H or K equations for a panel as follows. Let
fI (x, t)"0 be de"ned such that f"fI"0 describes the edge of the panel and $fI"m, where
m is the unit inward geodesic normal at the edge. This latter condition implies that f3'0 on
the panel. The geodesic normal is a vector that is tangent to the panel and simultaneously
perpendicular to the edge curve. Let H( f3 ) denote the Heaviside function. One is interested
in solving the following three wave equations when the panel described by f"0, f3'0
moves at arbitrary speed:

K2p@"Q
1
(x, t)H( fI )d ( f ), K2p@"

L
Lt

[Q
2
H( fI )d ( f )], (21, 22)

K2p@"$ ) [Q
3
nH( fI )d ( f )]. (23)
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The solution of equation (21) is slightly di!erent from that of equation (6):

4np@ (x, t)"PF/0
FI ;0

1

r C
Q

1
(y, q)
K D

ret

dR, (24)

where F3 (y; x, t)"[ f3 (y, q)]
ret

. The solutions of equations (22) and (23) are more complicated.
The following step is taken to reduce algebraic manipulation [12, 13]. Any function
multiplying the Dirac delta function can be restricted to the support of the delta function.
For example, it is well-known that u (x)d (x)"u (0)d (x). Using a tilde under a symbol to
denote restriction of a function to the panel surface and the rules of di!erentiation in
generalized function theory [6}8, 12, 13], one gets

L
Lt

[Q
2
H( fI )d ( f )]"

L
Lt

[Q
3
2
H( fI )d ( f )] (25)

"

LQ
3
2

Lt
H( fI )d ( f )!cMlQ

3
2
d ( fI )d( f )!cM

n
Q
3
2
H( fI ) D$f Dd@ ( f ),

$ ) [Q
3
H( fI )d ( f )]"$ ) [Q

3
3
H( fI )d ( f )]

"($
2
)Q

3
3T

!2H
f
Q
3
3n

)H( fI )d ( f )#Q
3
3ld ( fI )d ( f )#Q

3
3n

H( fI ) D$f Dd@( f ).

(26)

Here, we have the following symbols: Q
3
3l"Q

3
3
) m, Ml"M ) m is the local Mach number in

the direction of the geodesic normal, Q
3
3T

is the component of Q
3
3

tangent to the panel,
$
2
)Q

3
3T

is the surface divergence of Q
3
3
, Q

3
3n

is the component of Q
3
3
normal to the panel and

H
f

is the local mean curvature of the panel surface. Strictly speaking, one does not need the
restriction sign over many of the symbols. However, the sign is necessary on LQ

3
2
/Lt and on

the symbols multiplying d@( f ) as shown. Note that M
n
multiplying d@ ( f ) in equation (25),

and D$f D in both of the above equations multiplying d@ ( f ) are not restricted to the surface of
the panel [32]. Therefore, one cannot set D$f D in these terms equal to one.

One can always set Lq
3
/Ln"0 for any function q (x, t) which is restricted to the surface

f"0. This property helps in the reduction of algebraic manipulations which are extensive in
the derivation of a supersonic formulation. The time derivative of the restricted function is
given by the relation Lq

3
/Lt"Lq/Lt!v

n
Lq/Ln which is what an observer sitting on the data

surface measures as the rate of change of q with time. In this relation v
n
is the local normal

velocity of the data surface. To illustrate the nature of the simpli"cation introduced by the
restriction of a function multiplying the Dirac delta function to the support of the delta
function, we give the following example. Taking the derivatives with respect to x of both
sides of the equation u (x)d (x)"u(0)d (x), we get u@ (x)d(x)#u(xd@(x)"u (0)d@(x). This
relation means that the functional values of the generalized functions on each side of the
equality sign are the same for any test function. Obviously, the generalized function on the
right side of this relation is simpler than that on the left side. In the multi-dimensional case
of our problem, the simpli"cation in algebraic manipulations is substantial because the
number of expressions involved in the derivation is reduced.

The "rst source terms of equations (25) and (26) is of the type in equation (21). There is
a need to give the solution to two new wave equations with sources of the types below:

K2p@"Q
4
d ( fI )d( f ), K2p@"Q

5
H( fI ) D$f Dd@( f ). (27, 28)
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The solution of equation (27) is given in reference [12] as follows:

4np@ (x, t)"PF/0
F
3 /0

1

r C
Q

4
K

0
D
ret

d¸, (29)

where K
0
"D$F]$FI D which can be written in terms of the geometric and kinematic

parameters of the panel [12], and d¸ is the element of the length of the edge of the R-surface
generated by the panel surface.

The solution of equation (28) is much harder to obtain. After using the Green function of
the wave equation and integrating with respect to the source time, one gets

4np@(x, t)"P
1

r
[Q

5
D$f D]

ret
H(FI )d@(F) dy. (30)

The following identity [12, equation (4.39), 32] is next used to interpret the above integral:

P/ (x)d@( f ) dy"P
f/0
G!

1

D$f D
L
Ln C

/(x)

D$f DD#
2H

f
/ (x)

D$f D2 HdS, (31)

where f is an arbitrary surface here which is replaced by F when this identity is applied to
equation (30). Here H

f
denotes the local mean curvature of the surface f. For the R-surface

of the panel, let N"(n!M
n
r( )/K be the local unit normal and H

F
be the local normal

curvature. It can be shown easily that D$F D"K[D$f D]
ret

. Equation (30) can then be written
as

4np@(x, t)"P
F/0
G!

1

K

L
LNC

[Q
5
]
ret

H (FI )
rK D

ret

#

2H
F
[Q

5
]
ret

H (F3 )
rK2 HdR (32)

The task of "nding a solution of equation (28) is not "nished. The "rst term in the integrand
gives a line integral because

LH (F3 )/LN"N )$F3 d (F3 ). (33)

The interpretation of the resulting integral is [12]

P
F/0

[Q
5
]
ret

N )$F3 d (F3 )
rK2

dR"PF/0
F3 /0

[Q
5
]
ret

cot h@
rK2

d¸, (34)

where h@ is the angle between $F and $F3 . See references [12, 13] for further details of the
above mathematical steps.

The full solution of the FW}H and the K equations for sources on a panel moving
at any speed have been given but, in particular at supersonic speed. It is believed that this
result is suitable for development of an e$cient computer code so long as we limit the
use to supersonic panels [31]. For the thickness and loading terms of the FW}H equation,
the resulting analytic expression after taking all the derivatives explicitly, is a very
complicated result known as the formulation 3 of Farassat [30, 31]. Formulation 3 has been
coded in the high-speed propeller noise prediction code ASSPIN [33] by Dunn. The
derivation here is di!erent from and more advanced than the original derivation in the early
1980's. Farassat and Farris [25] have recently published the full derivation of the mean
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curvature of the R-surface which was originally derived and published in 1996 by the "rst
author [13].

In propfan noise prediction, the line integral in formulation 3 can produce a logarithmic
singularity in the acoustic "eld when the leading and trailing edges are not su$ciently swept
and the propeller is operated at high supersonic tip speed. This singularity was studied by
De Bernardis in a Ph.D. dissertation at the University of Rome (La Sapienza) and reported
later in reference [34]. Farassat and Myers [35] have shown that the singularity is removed
if we add the contribution of the quadrupoles of the FW}H equation to the line integral.
Thus, the singularity of the line integral in formulation 3 is because the physics of the
problem is not accounted fully in the di!erential equation when we retain only the thickness
and loading source terms of the FW}H equation.

We have continued to work on the supersonic source problem. A more recent paper from
a totally di!erent direction is reported by Farassat et al. [36]. One interesting result of this
work is that the analytic expression for the acoustic pressure obtained, called formulation 4,
is closely related to those of geometrical acoustics and optics. Another interesting and
important result is the formation of caustics in the radiation "eld, in particular in the near
"eld, of rotating blades at all tip speed ranges. In fact, it appears that for further progress,
one should apply other areas of advanced mathematics such as the singularity theory [37]
as utilized, for example, in optics [38]. Some interesting work along this line is by Ardavan
[39, 40].

In this paper, the work of the author and co-workers at NASA Langley Research Center
has been emphasized. The readers are encouraged to study the publications of the following
researchers who have contributed to time-domain analysis and its applications in rotating
blade noise prediction: M. K. Myers, Kenneth S. Brentner, T. F. Brooks and C. L. Burley
(blade}vortex interaction noise, tilt rotor noise), D. L. Hawkings and M. V. Lowson,
H. Ardavan, H. Tadghighi, Lyle N. Long, A. R. George (rotor noise), A. S. Lyrinzis
(application of Kirchho! formulas to rotor noise problems, particularly the review
article reference [41]), Michael Carley (propeller noise), Martin Kuntz (rotor noise), Judith
M. Gallman (application of formulation 1 to rotor noise), S. Ianniello (rotor noise,
particularly the papers on the construction of the R-surface), Luigi Morino (BEM in
aerodynamics and aeroacoustics), P. Di Francescantonio (rotor noise) and Enrico De
Bernardis, V. Wells and A. Han (rotor noise), A. Das (aerodynamics and aeroacoustics), and
J. Baeder (rotor noise).

4. CONCLUDING REMARKS

The advances in the application of the Kirchho! method in discrete frequency noise
prediction has been reviewed. Much progress has been made in the past 30 years. It can be
said that for aeroacoustic applications one can depend exclusively on the FW}H equation
with a penetrable data surface enclosing the most signi"cant part of the quadrupole sources.
It has been shown that the data surface can even be located in the non-linear region where
the use of the Kirchho! formula for a moving surface, a solution of the K equation, would
give large errors [17]. The state of noise prediction for subsonic sources is highly
satisfactory. We have a solution of the FW}H equation that has given us an e$cient and
robust code. When part or all of the data surface f"0 moves at supersonic speed, both the
structure of the acoustic "eld and the mathematics become much more complicated. Part of
the mathematical problem is due to the appearance of singularities in the analytic results
which are not real. There is also cancellation of singularities among various integrals. Much
progress has been made in the supersonic case. We have learned a lot but there is more to
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explore about this problem in the future. It was my encounter with Phil Doak in 1973 that
set the direction of my research in time-domain analysis. His farsighted remark about
ignoring &&the force of tradition'' made the time-domain calculations routine these days for
helicopter rotor and propeller noise prediction. Happy 80th birthday Phil!
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